Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.256339

ABSTRACT

Globally accessible preventive and therapeutic molecules against SARS-CoV-2 are urgently needed. DARPin molecules are an emerging class of novel therapeutics based on naturally occurring repeat proteins ([~]15 kDa in size) and can be rapidly produced in bacteria in large quantities. Here, we report the identification of 380 DARPin molecules specifically targeting the SARS-CoV-2 spike protein selected from a naive library of 1012 DARPin molecules. Using extensive biophysical and biochemical characterization, (pseudo)virus neutralization assays and cryo-EM analysis, 11 mono-DARPin molecules targeting either the receptor binding domain (RBD), the S1 N-terminal-domain (NTD) or the S2 domain of the SARS-CoV-2 spike protein were chosen. Based on these 11 mono-DARPin molecules, 31 anti-SARS-CoV-2 multi-DARPin molecules were constructed which can broadly be grouped into 2 types; multi-paratopic RBD-neutralizing DARPin molecules and multi-mode DARPin molecules targeting simultaneously RBD, NTD and the S2 domain. Each of these multi-DARPin molecules acts by binding with 3 DARPin modules to the SARS-CoV-2 spike protein, leading to potent inhibition of SARS-CoV-2 infection down to 1 ng/ml (12 pM) and potentially providing protection against viral escape mutations. Additionally, 2 DARPin modules binding serum albumin, conferring an expected half-life of about 3 weeks in humans, were included in the multi-DARPin molecules. The protective efficacy of one multi-DARPin molecule was studied in a Golden Syrian hamster SARS-CoV-2 infection model, resulting in a significant reduction in viral load and pathogenesis. In conclusion, the multi-DARPin molecules reported here display very high antiviral potency, high-production yield, and a long systemic half-life, and thereby have the potential for single-dose use for prevention and treatment of COVID-19.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266304

ABSTRACT

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. We found that the ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types, (partially) restores the virus-induced translational shut-down, and counteracts the CoV-mediated downregulation of IRE1 and the ER chaperone BiP. Proteome-wide data sets revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including HERPUD1, an essential factor of ER quality control, and ER-associated protein degradation complexes. The data show that thapsigargin hits a central mechanism required for CoV replication, suggesting that thapsigargin (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs. One Sentence Summary / Running titleSuppression of coronavirus replication through thapsigargin-regulated ER stress, ERQC / ERAD and metabolic pathways

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267658

ABSTRACT

Corona Virus Disease-2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations and pathogenesis. Nearly 0.4 million mutations were identified so far in [~]60,000 SARS-CoV-2 genomic sequences. In this study, we compared 207 of SARS-CoV-2 genomes reported from different parts of Bangladesh and their comparison with 467 globally reported sequences to understand the origin of viruses, possible patterns of mutations, availability of unique mutations, and their apparent impact on pathogenicity of the virus in victims of Bangladeshi population. Phylogenetic analyses indicates that in Bangladesh, SARS-CoV-2 viruses might arrived through infected travelers from European countries, and the GR clade was found as predominant in this region. We found 2602 mutations including 1602 missense mutations, 612 synonymous mutations, 36 insertions and deletions with 352 other mutations types. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (95.6%) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M and N of genomes, having nucleotide shift at G614 (n=459), were significantly higher (p[≤]0.001) than those having mutation at D614 (n=215). Previously reported frequent mutations such as P4715L, D614G, R203K, G204R and I300F were also prevalent in Bangladeshi isolates. Additionally, 87 unique amino acid changes were revealed and were categorized as originating from different cities of Bangladesh. The analyses would increase our understanding of variations in virus genomes circulating in Bangladesh and elsewhere and help develop novel therapeutic targets against SARS-CoV-2.


Subject(s)
Coronavirus Infections , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266825

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are validated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was validated using 59 sera of infected or vaccinated animals including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% was achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
SELECTION OF CITATIONS
SEARCH DETAIL